

Subject Descriptions

Subject Code	MATH 332
Subject Name	Computational Fluid Dynamics I
Credit Hours	3
Level of Study	3
Pre-Requisites	MATH 331
Faculty	Science

Subject Description

Fluid Dynamic Definition: Types of Fluid and its Properties, Viscosity and Viscoelasticity Fluid, Newtonian and Non-Newtonian Fluid, Compressible and In-compressible Fluid, Advection Equation in one Dimension: General Form, Physical Meaning, Discretization of variables and of Solution Space, Finite Difference Method for the Advection Equation in 1D: The 1D (Upwind, FTFS, FTBS, FTCS, Lax-Friedrichs, Leapfrog, Lax-Wendroff, Iterative Crank-Nicolson) Scheme, The Wave Equation in 1D: General Form, Physical Meaning, Finite Difference Method for the Wave Equation in 1D: The (FTCS, Lax-Friedrichs, Leapfrog, Lax-Wendroff) Scheme, Local Truncation Error (LTE), Consistency and Convergence, Convergence and Stability, CFL Condition, Fourier Analysis, Von Neumman Analysis, Monotonicity Preserving Scheme, Godunov's Theorem.

Subject Aims		Intended Learning Outcomes		
1.	To know a brief introduction on the origin of fluid dynamics.	1. 2.	Know theoretically and practically of fluid dynamics To understand mathematical characteristics of partial	
2.	Understanding of the hyperbolic partial differential equations in one space dimension.	3.	differential equations. To understand basic properties of computational	
3.	Know the entire analysis of finding the analytical solutions of the transport, wave, and heat equations.	4.	methods – accuracy, stability, consistency. To learn computational solution techniques for time	
4.	Comprehension of the underlying analytical solution of PDEs will be stressed as well as		integration of ordinary differential Equations.	
5.	appropriate programming skills. Comparison between the numerical and analytical	5.	To learn computational solution techniques for various types of partial differential equations	
5.	solutions of the previous PDEs.	6.	To acquire basic programming and graphic skills to conduct the flow field calculations and data analysis.	

Teaching Details

Lectures, supported by lecture notes with problem sets and model solutions, problems classes and small group tutorials.

Assessment Details		Teaching Schedule and Support for Students			
	Percentage Formal assessment		Hours		
First Exam	25%	Lecture	39		
Second Exam	25%	Tutorial	13		
Final Exam	40%	Practical	0		
In-course Assessment	10%	Office hours	6 hr/week		
Total Percentage	100%	Academic Advising	5 hr/week		

Textbook Information

Author	Date	Title	Edition	Publisher
Randall J. LeVeque	2007	Finite Difference Methods for Ordinary and Partial Differential Equations		SIAM